Skip to content

vllm.model_executor.models.paddleocr_vl

PaddleOCRImagePixelInputs

Bases: TensorSchema

Source code in vllm/model_executor/models/paddleocr_vl.py
class PaddleOCRImagePixelInputs(TensorSchema):
    type: Literal["pixel_values"]
    pixel_values: Annotated[
        torch.Tensor,
        TensorShape("bn", "p", 3, "patch_size", "patch_size", dynamic_dims={"p"}),
    ]
    image_grid_thw: Annotated[
        torch.Tensor,
        TensorShape("bn", 3),
    ]

image_grid_thw instance-attribute

image_grid_thw: Annotated[Tensor, TensorShape(bn, 3)]

pixel_values instance-attribute

pixel_values: Annotated[
    Tensor,
    TensorShape(
        bn, p, 3, patch_size, patch_size, dynamic_dims={p}
    ),
]

type instance-attribute

type: Literal['pixel_values']

PaddleOCRVLDummyInputsBuilder

Bases: BaseDummyInputsBuilder[PaddleOCRVLProcessingInfo]

Source code in vllm/model_executor/models/paddleocr_vl.py
class PaddleOCRVLDummyInputsBuilder(BaseDummyInputsBuilder[PaddleOCRVLProcessingInfo]):
    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)

        processor = self.info.get_hf_processor()
        image_token = processor.image_token

        return image_token * num_images

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
        mm_options: Mapping[str, BaseDummyOptions] | None = None,
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)

        max_image_size = self.info.get_image_size_with_most_features()
        image_overrides = mm_options.get("image") if mm_options else None

        return {
            "image": self._get_dummy_images(
                width=max_image_size.width,
                height=max_image_size.height,
                num_images=num_images,
                overrides=image_overrides,
            )
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions]
    | None = None,
) -> MultiModalDataDict
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)

    max_image_size = self.info.get_image_size_with_most_features()
    image_overrides = mm_options.get("image") if mm_options else None

    return {
        "image": self._get_dummy_images(
            width=max_image_size.width,
            height=max_image_size.height,
            num_images=num_images,
            overrides=image_overrides,
        )
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_images = mm_counts.get("image", 0)

    processor = self.info.get_hf_processor()
    image_token = processor.image_token

    return image_token * num_images

PaddleOCRVLForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsMRoPE

Source code in vllm/model_executor/models/paddleocr_vl.py
@MULTIMODAL_REGISTRY.register_processor(
    PaddleOCRVLMultiModalProcessor,
    info=PaddleOCRVLProcessingInfo,
    dummy_inputs=PaddleOCRVLDummyInputsBuilder,
)
class PaddleOCRVLForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsMRoPE):
    merge_by_field_config = True

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            "model.": "language_model.model.",
            "lm_head.": "language_model.lm_head.",
        }
    )

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        self.config = config
        self.multimodal_config = multimodal_config

        attn_backend_override = (
            multimodal_config.mm_encoder_attn_backend
            if multimodal_config is not None
            else None
        )

        self.visual = SiglipVisionModel(
            config=config.vision_config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "visual"),
            attn_backend_override=attn_backend_override,
        )
        self.mlp_AR = Projector(config, config.vision_config)

        self.language_model = Ernie4_5ForCausalLM(
            vllm_config=vllm_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        for layer in self.language_model.model.layers:
            if not isinstance(layer, PPMissingLayer):
                layer.self_attn.rotary_emb.is_neox_style = True

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def get_mrope_input_positions(
        self,
        input_tokens: list[int],
        hf_config: PretrainedConfig,
        image_grid_thw: list[list[int]] | torch.Tensor,
        video_grid_thw: list[list[int]] | torch.Tensor,
        second_per_grid_ts: list[float],
        context_len: int = 0,
        seq_len: int | None = None,
        audio_feature_lengths: torch.Tensor | None = None,
        use_audio_in_video: bool = False,
    ) -> tuple[torch.Tensor, int]:
        """Get mrope input positions and delta value."""

        image_token_id = hf_config.image_token_id
        video_token_id = hf_config.video_token_id
        vision_start_token_id = hf_config.vision_start_token_id
        spatial_merge_size = hf_config.vision_config.spatial_merge_size
        tokens_per_second = getattr(hf_config.vision_config, "tokens_per_second", 1.0)

        input_tokens_tensor = torch.tensor(input_tokens)
        vision_start_indices = torch.argwhere(
            input_tokens_tensor == vision_start_token_id
        ).squeeze(1)
        vision_tokens = input_tokens_tensor[vision_start_indices + 1]
        image_nums = (vision_tokens == image_token_id).sum()
        video_nums = (vision_tokens == video_token_id).sum()
        llm_pos_ids_list: list = []

        st = 0
        remain_images, remain_videos = image_nums, video_nums

        image_index, video_index = 0, 0
        for _ in range(image_nums + video_nums):
            video_second_per_grid_t = 0.0
            if remain_images > 0:
                try:
                    ed_image = input_tokens.index(image_token_id, st)
                except ValueError:
                    ed_image = len(input_tokens) + 1
            else:
                ed_image = len(input_tokens) + 1
            if remain_videos > 0:
                try:
                    ed_video = input_tokens.index(video_token_id, st)
                except ValueError:
                    ed_video = len(input_tokens) + 1
            else:
                ed_video = len(input_tokens) + 1
            if ed_image < ed_video:
                t, h, w = (
                    image_grid_thw[image_index][0],
                    image_grid_thw[image_index][1],
                    image_grid_thw[image_index][2],
                )
                image_index += 1
                remain_images -= 1
                ed = ed_image
            else:
                t, h, w = (
                    video_grid_thw[video_index][0],
                    video_grid_thw[video_index][1],
                    video_grid_thw[video_index][2],
                )
                video_second_per_grid_t = 1.0
                if second_per_grid_ts:
                    video_second_per_grid_t = second_per_grid_ts[video_index]
                video_index += 1
                remain_videos -= 1
                ed = ed_video

            llm_grid_t, llm_grid_h, llm_grid_w = (
                t,
                h // spatial_merge_size,
                w // spatial_merge_size,
            )
            text_len = ed - st

            st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
            llm_pos_ids_list.append(
                torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
            )

            t_index = (
                (
                    torch.arange(llm_grid_t)
                    .view(-1, 1)
                    .expand(-1, llm_grid_h * llm_grid_w)
                    * video_second_per_grid_t
                    * tokens_per_second
                )
                .long()
                .flatten()
            )

            h_index = (
                torch.arange(llm_grid_h)
                .view(1, -1, 1)
                .expand(llm_grid_t, -1, llm_grid_w)
                .flatten()
            )
            w_index = (
                torch.arange(llm_grid_w)
                .view(1, 1, -1)
                .expand(llm_grid_t, llm_grid_h, -1)
                .flatten()
            )
            llm_pos_ids_list.append(
                torch.stack([t_index, h_index, w_index]) + text_len + st_idx
            )
            st = ed + llm_grid_t * llm_grid_h * llm_grid_w

        if st < len(input_tokens):
            st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
            text_len = len(input_tokens) - st
            llm_pos_ids_list.append(
                torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
            )

        llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
        mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
        llm_positions = llm_positions[:, context_len:seq_len]

        return llm_positions, mrope_position_delta

    def get_language_model(self) -> nn.Module:
        return self.language_model

    def _parse_and_validate_image_input(
        self, **kwargs: object
    ) -> PaddleOCRImagePixelInputs | None:
        pixel_values = kwargs.pop("pixel_values", None)
        image_grid_thw = kwargs.pop("image_grid_thw", None)

        if pixel_values is None:
            return None

        return PaddleOCRImagePixelInputs(
            type="pixel_values",
            pixel_values=pixel_values,
            image_grid_thw=image_grid_thw,
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs,
    ):
        if intermediate_tensors is not None:
            inputs_embeds = None

        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            is_multimodal = kwargs.pop("is_multimodal", None)
            handle_oov_mm_token = kwargs.pop("handle_oov_mm_token", False)
            inputs_embeds = self.get_input_embeddings(
                input_ids,
                vision_embeddings,
                is_multimodal=is_multimodal,
                handle_oov_mm_token=handle_oov_mm_token,
            )
            input_ids = None

        return self.language_model(
            input_ids, positions, intermediate_tensors, inputs_embeds
        )

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("image"):
            return "<|IMAGE_START|><|IMAGE_PLACEHOLDER|><|IMAGE_END|>"

        raise ValueError("Only image modality is supported")

    def encode_image(
        self, pixel_values: torch.Tensor, image_grid_thw: torch.Tensor
    ) -> torch.Tensor:
        pixel_values = pixel_values.type(self.visual.dtype)
        siglip_position_ids = list()
        image_grid_hws = list()
        cu_seqlens = [0]

        thw_tuple = tuple(image_grid_thw.tolist())
        numel = np.prod(thw_tuple)
        image_grid_hws.append(thw_tuple)
        image_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:])
        siglip_position_ids.append(image_position_ids)
        cu_seqlens.append(cu_seqlens[-1] + numel)

        siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(
            pixel_values.device
        )
        cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values.device)

        vision_outputs = self.visual(
            pixel_values=pixel_values,
            image_grid_thw=image_grid_hws,
            position_ids=siglip_position_ids,
            interpolate_pos_encoding=True,
            cu_seqlens=cu_seqlens,
        )
        return vision_outputs

    def _process_image_input(
        self, image_input: PaddleOCRImagePixelInputs
    ) -> MultiModalEmbeddings:
        pixel_values = image_input.pixel_values
        image_grid_thw = image_input.image_grid_thw
        vision_outputs = tuple(
            self.encode_image(pixel, grid).squeeze(0)
            for pixel, grid in zip(pixel_values, image_grid_thw)
        )
        image_embeds = self.mlp_AR(vision_outputs, image_grid_thw)
        return image_embeds

    def get_multimodal_embeddings(self, **kwargs) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return ()

        multimodal_embeddings: tuple[torch.Tensor, ...] = ()
        image_embeds = self._process_image_input(image_input)
        multimodal_embeddings += tuple(image_embeds)

        return multimodal_embeddings

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
        return autoloaded_weights

config instance-attribute

config = config

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.": "language_model.model.",
        "lm_head.": "language_model.lm_head.",
    }
)

language_model instance-attribute

language_model = Ernie4_5ForCausalLM(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

merge_by_field_config class-attribute instance-attribute

merge_by_field_config = True

mlp_AR instance-attribute

mlp_AR = Projector(config, vision_config)

multimodal_config instance-attribute

multimodal_config = multimodal_config

visual instance-attribute

visual = SiglipVisionModel(
    config=vision_config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "visual"),
    attn_backend_override=attn_backend_override,
)

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config

    self.config = config
    self.multimodal_config = multimodal_config

    attn_backend_override = (
        multimodal_config.mm_encoder_attn_backend
        if multimodal_config is not None
        else None
    )

    self.visual = SiglipVisionModel(
        config=config.vision_config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "visual"),
        attn_backend_override=attn_backend_override,
    )
    self.mlp_AR = Projector(config, config.vision_config)

    self.language_model = Ernie4_5ForCausalLM(
        vllm_config=vllm_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    for layer in self.language_model.model.layers:
        if not isinstance(layer, PPMissingLayer):
            layer.self_attn.rotary_emb.is_neox_style = True

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors
    )

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> PaddleOCRImagePixelInputs | None
Source code in vllm/model_executor/models/paddleocr_vl.py
def _parse_and_validate_image_input(
    self, **kwargs: object
) -> PaddleOCRImagePixelInputs | None:
    pixel_values = kwargs.pop("pixel_values", None)
    image_grid_thw = kwargs.pop("image_grid_thw", None)

    if pixel_values is None:
        return None

    return PaddleOCRImagePixelInputs(
        type="pixel_values",
        pixel_values=pixel_values,
        image_grid_thw=image_grid_thw,
    )

_process_image_input

_process_image_input(
    image_input: PaddleOCRImagePixelInputs,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/paddleocr_vl.py
def _process_image_input(
    self, image_input: PaddleOCRImagePixelInputs
) -> MultiModalEmbeddings:
    pixel_values = image_input.pixel_values
    image_grid_thw = image_input.image_grid_thw
    vision_outputs = tuple(
        self.encode_image(pixel, grid).squeeze(0)
        for pixel, grid in zip(pixel_values, image_grid_thw)
    )
    image_embeds = self.mlp_AR(vision_outputs, image_grid_thw)
    return image_embeds

compute_logits

compute_logits(hidden_states: Tensor) -> Tensor | None
Source code in vllm/model_executor/models/paddleocr_vl.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor | None:
    return self.language_model.compute_logits(hidden_states)

encode_image

encode_image(
    pixel_values: Tensor, image_grid_thw: Tensor
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def encode_image(
    self, pixel_values: torch.Tensor, image_grid_thw: torch.Tensor
) -> torch.Tensor:
    pixel_values = pixel_values.type(self.visual.dtype)
    siglip_position_ids = list()
    image_grid_hws = list()
    cu_seqlens = [0]

    thw_tuple = tuple(image_grid_thw.tolist())
    numel = np.prod(thw_tuple)
    image_grid_hws.append(thw_tuple)
    image_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:])
    siglip_position_ids.append(image_position_ids)
    cu_seqlens.append(cu_seqlens[-1] + numel)

    siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(
        pixel_values.device
    )
    cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values.device)

    vision_outputs = self.visual(
        pixel_values=pixel_values,
        image_grid_thw=image_grid_hws,
        position_ids=siglip_position_ids,
        interpolate_pos_encoding=True,
        cu_seqlens=cu_seqlens,
    )
    return vision_outputs

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    **kwargs,
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    **kwargs,
):
    if intermediate_tensors is not None:
        inputs_embeds = None

    elif inputs_embeds is None:
        vision_embeddings = self.get_multimodal_embeddings(**kwargs)
        is_multimodal = kwargs.pop("is_multimodal", None)
        handle_oov_mm_token = kwargs.pop("handle_oov_mm_token", False)
        inputs_embeds = self.get_input_embeddings(
            input_ids,
            vision_embeddings,
            is_multimodal=is_multimodal,
            handle_oov_mm_token=handle_oov_mm_token,
        )
        input_ids = None

    return self.language_model(
        input_ids, positions, intermediate_tensors, inputs_embeds
    )

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_language_model(self) -> nn.Module:
    return self.language_model

get_mrope_input_positions

get_mrope_input_positions(
    input_tokens: list[int],
    hf_config: PretrainedConfig,
    image_grid_thw: list[list[int]] | Tensor,
    video_grid_thw: list[list[int]] | Tensor,
    second_per_grid_ts: list[float],
    context_len: int = 0,
    seq_len: int | None = None,
    audio_feature_lengths: Tensor | None = None,
    use_audio_in_video: bool = False,
) -> tuple[Tensor, int]

Get mrope input positions and delta value.

Source code in vllm/model_executor/models/paddleocr_vl.py
def get_mrope_input_positions(
    self,
    input_tokens: list[int],
    hf_config: PretrainedConfig,
    image_grid_thw: list[list[int]] | torch.Tensor,
    video_grid_thw: list[list[int]] | torch.Tensor,
    second_per_grid_ts: list[float],
    context_len: int = 0,
    seq_len: int | None = None,
    audio_feature_lengths: torch.Tensor | None = None,
    use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
    """Get mrope input positions and delta value."""

    image_token_id = hf_config.image_token_id
    video_token_id = hf_config.video_token_id
    vision_start_token_id = hf_config.vision_start_token_id
    spatial_merge_size = hf_config.vision_config.spatial_merge_size
    tokens_per_second = getattr(hf_config.vision_config, "tokens_per_second", 1.0)

    input_tokens_tensor = torch.tensor(input_tokens)
    vision_start_indices = torch.argwhere(
        input_tokens_tensor == vision_start_token_id
    ).squeeze(1)
    vision_tokens = input_tokens_tensor[vision_start_indices + 1]
    image_nums = (vision_tokens == image_token_id).sum()
    video_nums = (vision_tokens == video_token_id).sum()
    llm_pos_ids_list: list = []

    st = 0
    remain_images, remain_videos = image_nums, video_nums

    image_index, video_index = 0, 0
    for _ in range(image_nums + video_nums):
        video_second_per_grid_t = 0.0
        if remain_images > 0:
            try:
                ed_image = input_tokens.index(image_token_id, st)
            except ValueError:
                ed_image = len(input_tokens) + 1
        else:
            ed_image = len(input_tokens) + 1
        if remain_videos > 0:
            try:
                ed_video = input_tokens.index(video_token_id, st)
            except ValueError:
                ed_video = len(input_tokens) + 1
        else:
            ed_video = len(input_tokens) + 1
        if ed_image < ed_video:
            t, h, w = (
                image_grid_thw[image_index][0],
                image_grid_thw[image_index][1],
                image_grid_thw[image_index][2],
            )
            image_index += 1
            remain_images -= 1
            ed = ed_image
        else:
            t, h, w = (
                video_grid_thw[video_index][0],
                video_grid_thw[video_index][1],
                video_grid_thw[video_index][2],
            )
            video_second_per_grid_t = 1.0
            if second_per_grid_ts:
                video_second_per_grid_t = second_per_grid_ts[video_index]
            video_index += 1
            remain_videos -= 1
            ed = ed_video

        llm_grid_t, llm_grid_h, llm_grid_w = (
            t,
            h // spatial_merge_size,
            w // spatial_merge_size,
        )
        text_len = ed - st

        st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
        llm_pos_ids_list.append(
            torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
        )

        t_index = (
            (
                torch.arange(llm_grid_t)
                .view(-1, 1)
                .expand(-1, llm_grid_h * llm_grid_w)
                * video_second_per_grid_t
                * tokens_per_second
            )
            .long()
            .flatten()
        )

        h_index = (
            torch.arange(llm_grid_h)
            .view(1, -1, 1)
            .expand(llm_grid_t, -1, llm_grid_w)
            .flatten()
        )
        w_index = (
            torch.arange(llm_grid_w)
            .view(1, 1, -1)
            .expand(llm_grid_t, llm_grid_h, -1)
            .flatten()
        )
        llm_pos_ids_list.append(
            torch.stack([t_index, h_index, w_index]) + text_len + st_idx
        )
        st = ed + llm_grid_t * llm_grid_h * llm_grid_w

    if st < len(input_tokens):
        st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
        text_len = len(input_tokens) - st
        llm_pos_ids_list.append(
            torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
        )

    llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
    mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
    llm_positions = llm_positions[:, context_len:seq_len]

    return llm_positions, mrope_position_delta

get_multimodal_embeddings

get_multimodal_embeddings(**kwargs) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_multimodal_embeddings(self, **kwargs) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return ()

    multimodal_embeddings: tuple[torch.Tensor, ...] = ()
    image_embeds = self._process_image_input(image_input)
    multimodal_embeddings += tuple(image_embeds)

    return multimodal_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> str | None
Source code in vllm/model_executor/models/paddleocr_vl.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
    if modality.startswith("image"):
        return "<|IMAGE_START|><|IMAGE_PLACEHOLDER|><|IMAGE_END|>"

    raise ValueError("Only image modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/paddleocr_vl.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
    return autoloaded_weights

PaddleOCRVLMultiModalProcessor

Bases: BaseMultiModalProcessor[PaddleOCRVLProcessingInfo]

Source code in vllm/model_executor/models/paddleocr_vl.py
class PaddleOCRVLMultiModalProcessor(
    BaseMultiModalProcessor[PaddleOCRVLProcessingInfo]
):
    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        if mm_data:
            processed_outputs = self.info.ctx.call_hf_processor(
                self.info.get_hf_processor(**mm_kwargs),
                dict(text=prompt, **mm_data),
                dict(**mm_kwargs, **tok_kwargs),
            )
            num_patches_per_image = processed_outputs["image_grid_thw"].prod(-1)
            processed_outputs["pixel_values"] = processed_outputs["pixel_values"].split(
                num_patches_per_image.tolist()
            )
        else:
            tokenizer = self.info.get_tokenizer()
            processed_outputs = tokenizer(
                prompt, add_special_tokens=True, return_tensors="pt"
            )
        return processed_outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            pixel_values=MultiModalFieldConfig.batched("image"),
            image_grid_thw=MultiModalFieldConfig.batched("image"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargs,
    ) -> Sequence[PromptUpdate]:
        image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
        hf_config = self.info.get_hf_config()
        image_token_id = hf_config.image_token_id

        def get_replacement(item_idx: int, image_processor):
            images = mm_items.get_items("image", ImageProcessorItems)

            image_size = images.get_image_size(item_idx)
            num_image_tokens = self.info.get_num_image_tokens(
                image_width=image_size.width,
                image_height=image_size.height,
                image_processor=image_processor,
            )

            return [image_token_id] * num_image_tokens

        return [
            PromptReplacement(
                modality="image",
                target=[image_token_id],
                replacement=partial(get_replacement, image_processor=image_processor),
            ),
        ]

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/paddleocr_vl.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    if mm_data:
        processed_outputs = self.info.ctx.call_hf_processor(
            self.info.get_hf_processor(**mm_kwargs),
            dict(text=prompt, **mm_data),
            dict(**mm_kwargs, **tok_kwargs),
        )
        num_patches_per_image = processed_outputs["image_grid_thw"].prod(-1)
        processed_outputs["pixel_values"] = processed_outputs["pixel_values"].split(
            num_patches_per_image.tolist()
        )
    else:
        tokenizer = self.info.get_tokenizer()
        processed_outputs = tokenizer(
            prompt, add_special_tokens=True, return_tensors="pt"
        )
    return processed_outputs

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/paddleocr_vl.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
        image_grid_thw=MultiModalFieldConfig.batched("image"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/paddleocr_vl.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
    hf_config = self.info.get_hf_config()
    image_token_id = hf_config.image_token_id

    def get_replacement(item_idx: int, image_processor):
        images = mm_items.get_items("image", ImageProcessorItems)

        image_size = images.get_image_size(item_idx)
        num_image_tokens = self.info.get_num_image_tokens(
            image_width=image_size.width,
            image_height=image_size.height,
            image_processor=image_processor,
        )

        return [image_token_id] * num_image_tokens

    return [
        PromptReplacement(
            modality="image",
            target=[image_token_id],
            replacement=partial(get_replacement, image_processor=image_processor),
        ),
    ]

PaddleOCRVLProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/paddleocr_vl.py
class PaddleOCRVLProcessingInfo(BaseProcessingInfo):
    def get_hf_config(self):
        return self.ctx.get_hf_config()

    def get_hf_processor(self, **kwargs: object):
        return self.ctx.get_hf_processor(**kwargs)

    def get_image_processor(self, **kwargs: object):
        return self.get_hf_processor(**kwargs).image_processor

    def get_supported_mm_limits(self):
        return {"image": None}

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
        image_processor,
    ) -> int:
        if image_processor is None:
            image_processor = self.get_image_processor()

        do_resize = True
        hf_config = self.get_hf_config()
        vision_config = hf_config.vision_config
        patch_size = vision_config.patch_size
        merge_size = vision_config.spatial_merge_size

        if do_resize:
            resized_height, resized_width = smart_resize(
                height=image_height,
                width=image_width,
                factor=patch_size * merge_size,
                min_pixels=image_processor.min_pixels,
                max_pixels=image_processor.max_pixels,
            )
            preprocessed_size = ImageSize(width=resized_width, height=resized_height)
        else:
            preprocessed_size = ImageSize(width=image_width, height=image_height)

        grid_t = 1
        grid_h = preprocessed_size.height // patch_size
        grid_w = preprocessed_size.width // patch_size

        num_patches = grid_t * grid_h * grid_w
        num_image_tokens = num_patches // (merge_size**2)

        return num_image_tokens

    def get_image_size_with_most_features(self) -> ImageSize:
        hf_config = self.get_hf_config()
        image_size = hf_config.vision_config.image_size
        return ImageSize(height=image_size, width=image_size)

get_hf_config

get_hf_config()
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_hf_config(self):
    return self.ctx.get_hf_config()

get_hf_processor

get_hf_processor(**kwargs: object)
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_hf_processor(self, **kwargs: object):
    return self.ctx.get_hf_processor(**kwargs)

get_image_processor

get_image_processor(**kwargs: object)
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_image_processor(self, **kwargs: object):
    return self.get_hf_processor(**kwargs).image_processor

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()
    image_size = hf_config.vision_config.image_size
    return ImageSize(height=image_size, width=image_size)

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int, image_processor
) -> int
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
    image_processor,
) -> int:
    if image_processor is None:
        image_processor = self.get_image_processor()

    do_resize = True
    hf_config = self.get_hf_config()
    vision_config = hf_config.vision_config
    patch_size = vision_config.patch_size
    merge_size = vision_config.spatial_merge_size

    if do_resize:
        resized_height, resized_width = smart_resize(
            height=image_height,
            width=image_width,
            factor=patch_size * merge_size,
            min_pixels=image_processor.min_pixels,
            max_pixels=image_processor.max_pixels,
        )
        preprocessed_size = ImageSize(width=resized_width, height=resized_height)
    else:
        preprocessed_size = ImageSize(width=image_width, height=image_height)

    grid_t = 1
    grid_h = preprocessed_size.height // patch_size
    grid_w = preprocessed_size.width // patch_size

    num_patches = grid_t * grid_h * grid_w
    num_image_tokens = num_patches // (merge_size**2)

    return num_image_tokens

get_supported_mm_limits

get_supported_mm_limits()
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_supported_mm_limits(self):
    return {"image": None}

Projector

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class Projector(nn.Module):
    def __init__(
        self,
        text_config: PretrainedConfig,
        vision_config: PretrainedConfig,
        prefix: str = "",
    ):
        super().__init__()
        self.text_config = text_config
        self.vision_config = vision_config
        self.merge_kernel_size = (2, 2)

        self.hidden_size = (
            self.vision_config.hidden_size
            * self.merge_kernel_size[0]
            * self.merge_kernel_size[1]
        )

        self.pre_norm = torch.nn.LayerNorm(self.vision_config.hidden_size, eps=1e-05)
        self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
        self.act = GELUActivation()
        self.linear_2 = nn.Linear(
            self.hidden_size, self.text_config.hidden_size, bias=True
        )

    def forward(
        self,
        image_features: torch.Tensor,
        image_grid_thw: torch.Tensor,
    ) -> torch.Tensor:
        m1, m2 = self.merge_kernel_size
        if isinstance(image_features, (list, tuple)):
            processed_features = list()
            for image_feature, image_grid in zip(image_features, image_grid_thw):
                image_feature = self.pre_norm(image_feature)
                t, h, w = image_grid

                image_feature = rearrange(
                    image_feature,
                    "(t h p1 w p2) d -> (t h w) (p1 p2 d)",
                    t=t,
                    h=h // m1,
                    p1=m1,
                    w=w // m2,
                    p2=m2,
                )
                hidden_states = self.linear_1(image_feature)
                hidden_states = self.act(hidden_states)
                hidden_states = self.linear_2(hidden_states)
                processed_features.append(hidden_states)

            return processed_features

        dims = image_features.shape[:-1]
        dim = image_features.shape[-1]
        image_features = image_features.view(np.prod(dims), dim)
        hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size)
        hidden_states = self.linear_1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)

        return hidden_states.view(*dims, -1)

act instance-attribute

act = GELUActivation()

hidden_size instance-attribute

hidden_size = (
    hidden_size
    * merge_kernel_size[0]
    * merge_kernel_size[1]
)

linear_1 instance-attribute

linear_1 = Linear(hidden_size, hidden_size, bias=True)

linear_2 instance-attribute

linear_2 = Linear(hidden_size, hidden_size, bias=True)

merge_kernel_size instance-attribute

merge_kernel_size = (2, 2)

pre_norm instance-attribute

pre_norm = LayerNorm(hidden_size, eps=1e-05)

text_config instance-attribute

text_config = text_config

vision_config instance-attribute

vision_config = vision_config

__init__

__init__(
    text_config: PretrainedConfig,
    vision_config: PretrainedConfig,
    prefix: str = "",
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    text_config: PretrainedConfig,
    vision_config: PretrainedConfig,
    prefix: str = "",
):
    super().__init__()
    self.text_config = text_config
    self.vision_config = vision_config
    self.merge_kernel_size = (2, 2)

    self.hidden_size = (
        self.vision_config.hidden_size
        * self.merge_kernel_size[0]
        * self.merge_kernel_size[1]
    )

    self.pre_norm = torch.nn.LayerNorm(self.vision_config.hidden_size, eps=1e-05)
    self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
    self.act = GELUActivation()
    self.linear_2 = nn.Linear(
        self.hidden_size, self.text_config.hidden_size, bias=True
    )

forward

forward(
    image_features: Tensor, image_grid_thw: Tensor
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    image_features: torch.Tensor,
    image_grid_thw: torch.Tensor,
) -> torch.Tensor:
    m1, m2 = self.merge_kernel_size
    if isinstance(image_features, (list, tuple)):
        processed_features = list()
        for image_feature, image_grid in zip(image_features, image_grid_thw):
            image_feature = self.pre_norm(image_feature)
            t, h, w = image_grid

            image_feature = rearrange(
                image_feature,
                "(t h p1 w p2) d -> (t h w) (p1 p2 d)",
                t=t,
                h=h // m1,
                p1=m1,
                w=w // m2,
                p2=m2,
            )
            hidden_states = self.linear_1(image_feature)
            hidden_states = self.act(hidden_states)
            hidden_states = self.linear_2(hidden_states)
            processed_features.append(hidden_states)

        return processed_features

    dims = image_features.shape[:-1]
    dim = image_features.shape[-1]
    image_features = image_features.view(np.prod(dims), dim)
    hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size)
    hidden_states = self.linear_1(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states = self.linear_2(hidden_states)

    return hidden_states.view(*dims, -1)

SigLIPRotaryEmbedding

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SigLIPRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.rope_init()

    def rope_init(self):
        inv_freq = 1.0 / (
            self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim)
        )
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(
            seqlen,
            device=self.inv_freq.device,
            dtype=self.inv_freq.dtype,
        )
        freqs = torch.outer(seq, self.inv_freq)
        return freqs

dim instance-attribute

dim = dim

theta instance-attribute

theta = theta

__init__

__init__(dim: int, theta: float = 10000.0) -> None
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(self, dim: int, theta: float = 10000.0) -> None:
    super().__init__()
    self.dim = dim
    self.theta = theta
    self.rope_init()

forward

forward(seqlen: int) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(self, seqlen: int) -> torch.Tensor:
    seq = torch.arange(
        seqlen,
        device=self.inv_freq.device,
        dtype=self.inv_freq.dtype,
    )
    freqs = torch.outer(seq, self.inv_freq)
    return freqs

rope_init

rope_init()
Source code in vllm/model_executor/models/paddleocr_vl.py
def rope_init(self):
    inv_freq = 1.0 / (
        self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim)
    )
    self.register_buffer("inv_freq", inv_freq, persistent=False)

SiglipAttention

Bases: Module

SigLIP vision attention adapted from Qwen2.5-VisionAttention.

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipAttention(nn.Module):
    """SigLIP vision attention adapted from Qwen2.5-VisionAttention."""

    def __init__(
        self,
        *,
        embed_dim: int,
        num_heads: int,
        projection_size: int,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        attn_backend: _Backend = _Backend.TORCH_SDPA,
        attn_backend_override: _Backend | None = None,
        use_upstream_fa: bool = False,
    ) -> None:
        super().__init__()

        self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
        self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
        self.hidden_size_per_attention_head = dist_utils.divide(
            projection_size, num_heads
        )
        self.num_attention_heads_per_partition = dist_utils.divide(
            num_heads, self.tp_size
        )

        self.qkv_proj = QKVParallelLinear(
            hidden_size=embed_dim,
            head_size=self.hidden_size_per_attention_head,
            total_num_heads=num_heads,
            total_num_kv_heads=num_heads,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.out_proj = RowParallelLinear(
            input_size=projection_size,
            output_size=embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.attn_backend = attn_backend
        self.use_upstream_fa = use_upstream_fa
        self.attn_backend, self.flash_attn_varlen_func = (
            maybe_get_vit_flash_attn_backend(
                self.attn_backend,
                self.use_upstream_fa,
                attn_backend_override=attn_backend_override,
            )
        )
        self.is_flash_attn_backend = self.attn_backend in {
            _Backend.FLASH_ATTN,
            _Backend.ROCM_AITER_FA,
        }

    def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
        seq_len, bs, _ = qkv.shape
        if self.tp_size > 1:
            qkv = all_gather_interleave(qkv, self.qkv_proj.hidden_size, self.tp_size)

        q, k, v = qkv.chunk(3, dim=2)

        if self.tp_size > 1:
            splitter = partial(
                dist_utils.split_tensor_along_last_dim, num_partitions=self.tp_size
            )
            q = splitter(q)[self.tp_rank]
            k = splitter(k)[self.tp_rank]
            v = splitter(v)[self.tp_rank]

        new_shape = (
            seq_len,
            bs,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
        )
        q, k, v = (x.view(*new_shape) for x in (q, k, v))
        return q, k, v

    def forward(
        self,
        hidden_states: torch.Tensor,
        *,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor | None,
        max_seqlen: torch.Tensor | None,
        seqlens: torch.Tensor | None,
    ) -> torch.Tensor:
        batch_size, _, _ = hidden_states.shape

        x = rearrange(hidden_states, "b s d -> s b d")
        x, _ = self.qkv_proj(x)
        q, k, v = self.split_qkv(x)
        q, k, v = (rearrange(t, "s b h d -> b s h d") for t in (q, k, v))

        if rotary_pos_emb is not None:
            qk_concat = torch.cat([q, k], dim=0)
            qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
            q, k = torch.chunk(qk_rotated, 2, dim=0)

        if self.is_flash_attn_backend:
            if max_seqlen is None:
                raise ValueError("Flash attention backend requires max_seqlen.")
            context_layer = vit_flash_attn_wrapper(
                q,
                k,
                v,
                cu_seqlens,
                max_seqlen,
                batch_size,
                self.attn_backend == _Backend.ROCM_AITER_FA,
                self.use_upstream_fa,
            )
        elif self.attn_backend == _Backend.TORCH_SDPA:
            outputs = []
            for i in range(1, len(cu_seqlens)):
                start_idx = cu_seqlens[i - 1]
                end_idx = cu_seqlens[i]
                q_i = q[:, start_idx:end_idx]
                k_i = k[:, start_idx:end_idx]
                v_i = v[:, start_idx:end_idx]
                q_i, k_i, v_i = (
                    rearrange(tensor, "b s h d -> b h s d")
                    for tensor in (q_i, k_i, v_i)
                )
                output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
                output_i = rearrange(output_i, "b h s d -> b s h d")
                outputs.append(output_i)
            context_layer = torch.cat(outputs, dim=1)
            context_layer = rearrange(
                context_layer, "b s h d -> s b (h d)"
            ).contiguous()
        elif self.attn_backend == _Backend.XFORMERS:
            if seqlens is None:
                raise ValueError("xFormers attention backend requires seqlens tensor.")
            context_layer = vit_xformers_attn_wrapper(q, k, v, seqlens)
        else:
            raise RuntimeError(
                f"PaddleOCR-VL does not support {self.attn_backend} backend now."
            )

        output, _ = self.out_proj(context_layer)
        output = rearrange(output, "s b d -> b s d")
        return output

attn_backend instance-attribute

attn_backend = attn_backend

hidden_size_per_attention_head instance-attribute

hidden_size_per_attention_head = divide(
    projection_size, num_heads
)

is_flash_attn_backend instance-attribute

is_flash_attn_backend = attn_backend in {
    FLASH_ATTN,
    ROCM_AITER_FA,
}

num_attention_heads_per_partition instance-attribute

num_attention_heads_per_partition = divide(
    num_heads, tp_size
)

out_proj instance-attribute

out_proj = RowParallelLinear(
    input_size=projection_size,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=hidden_size_per_attention_head,
    total_num_heads=num_heads,
    total_num_kv_heads=num_heads,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

tp_rank instance-attribute

tp_size instance-attribute

use_upstream_fa instance-attribute

use_upstream_fa = use_upstream_fa

__init__

__init__(
    *,
    embed_dim: int,
    num_heads: int,
    projection_size: int,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend: _Backend = TORCH_SDPA,
    attn_backend_override: _Backend | None = None,
    use_upstream_fa: bool = False,
) -> None
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    *,
    embed_dim: int,
    num_heads: int,
    projection_size: int,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend: _Backend = _Backend.TORCH_SDPA,
    attn_backend_override: _Backend | None = None,
    use_upstream_fa: bool = False,
) -> None:
    super().__init__()

    self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
    self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
    self.hidden_size_per_attention_head = dist_utils.divide(
        projection_size, num_heads
    )
    self.num_attention_heads_per_partition = dist_utils.divide(
        num_heads, self.tp_size
    )

    self.qkv_proj = QKVParallelLinear(
        hidden_size=embed_dim,
        head_size=self.hidden_size_per_attention_head,
        total_num_heads=num_heads,
        total_num_kv_heads=num_heads,
        bias=True,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )
    self.out_proj = RowParallelLinear(
        input_size=projection_size,
        output_size=embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.out_proj",
    )

    self.attn_backend = attn_backend
    self.use_upstream_fa = use_upstream_fa
    self.attn_backend, self.flash_attn_varlen_func = (
        maybe_get_vit_flash_attn_backend(
            self.attn_backend,
            self.use_upstream_fa,
            attn_backend_override=attn_backend_override,
        )
    )
    self.is_flash_attn_backend = self.attn_backend in {
        _Backend.FLASH_ATTN,
        _Backend.ROCM_AITER_FA,
    }

forward

forward(
    hidden_states: Tensor,
    *,
    cu_seqlens: Tensor,
    rotary_pos_emb: Tensor | None,
    max_seqlen: Tensor | None,
    seqlens: Tensor | None,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    hidden_states: torch.Tensor,
    *,
    cu_seqlens: torch.Tensor,
    rotary_pos_emb: torch.Tensor | None,
    max_seqlen: torch.Tensor | None,
    seqlens: torch.Tensor | None,
) -> torch.Tensor:
    batch_size, _, _ = hidden_states.shape

    x = rearrange(hidden_states, "b s d -> s b d")
    x, _ = self.qkv_proj(x)
    q, k, v = self.split_qkv(x)
    q, k, v = (rearrange(t, "s b h d -> b s h d") for t in (q, k, v))

    if rotary_pos_emb is not None:
        qk_concat = torch.cat([q, k], dim=0)
        qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
        q, k = torch.chunk(qk_rotated, 2, dim=0)

    if self.is_flash_attn_backend:
        if max_seqlen is None:
            raise ValueError("Flash attention backend requires max_seqlen.")
        context_layer = vit_flash_attn_wrapper(
            q,
            k,
            v,
            cu_seqlens,
            max_seqlen,
            batch_size,
            self.attn_backend == _Backend.ROCM_AITER_FA,
            self.use_upstream_fa,
        )
    elif self.attn_backend == _Backend.TORCH_SDPA:
        outputs = []
        for i in range(1, len(cu_seqlens)):
            start_idx = cu_seqlens[i - 1]
            end_idx = cu_seqlens[i]
            q_i = q[:, start_idx:end_idx]
            k_i = k[:, start_idx:end_idx]
            v_i = v[:, start_idx:end_idx]
            q_i, k_i, v_i = (
                rearrange(tensor, "b s h d -> b h s d")
                for tensor in (q_i, k_i, v_i)
            )
            output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
            output_i = rearrange(output_i, "b h s d -> b s h d")
            outputs.append(output_i)
        context_layer = torch.cat(outputs, dim=1)
        context_layer = rearrange(
            context_layer, "b s h d -> s b (h d)"
        ).contiguous()
    elif self.attn_backend == _Backend.XFORMERS:
        if seqlens is None:
            raise ValueError("xFormers attention backend requires seqlens tensor.")
        context_layer = vit_xformers_attn_wrapper(q, k, v, seqlens)
    else:
        raise RuntimeError(
            f"PaddleOCR-VL does not support {self.attn_backend} backend now."
        )

    output, _ = self.out_proj(context_layer)
    output = rearrange(output, "s b d -> b s d")
    return output

split_qkv

split_qkv(qkv: Tensor) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/paddleocr_vl.py
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
    seq_len, bs, _ = qkv.shape
    if self.tp_size > 1:
        qkv = all_gather_interleave(qkv, self.qkv_proj.hidden_size, self.tp_size)

    q, k, v = qkv.chunk(3, dim=2)

    if self.tp_size > 1:
        splitter = partial(
            dist_utils.split_tensor_along_last_dim, num_partitions=self.tp_size
        )
        q = splitter(q)[self.tp_rank]
        k = splitter(k)[self.tp_rank]
        v = splitter(v)[self.tp_rank]

    new_shape = (
        seq_len,
        bs,
        self.num_attention_heads_per_partition,
        self.hidden_size_per_attention_head,
    )
    q, k, v = (x.view(*new_shape) for x in (q, k, v))
    return q, k, v

SiglipEncoder

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipEncoder(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        attn_backend_override: _Backend | None = None,
    ):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size
        num_heads = config.num_attention_heads
        head_dim = embed_dim // num_heads
        self.attn_backend = get_vit_attn_backend(
            head_size=head_dim,
            dtype=torch.get_default_dtype(),
            attn_backend_override=attn_backend_override,
        )
        self.use_upstream_fa = False
        if self.attn_backend not in {
            _Backend.FLASH_ATTN,
            _Backend.ROCM_AITER_FA,
        } and check_upstream_fa_availability(torch.get_default_dtype()):
            self.attn_backend = _Backend.FLASH_ATTN
            self.use_upstream_fa = True
        if self.attn_backend not in {
            _Backend.FLASH_ATTN,
            _Backend.TORCH_SDPA,
            _Backend.XFORMERS,
            _Backend.ROCM_AITER_FA,
        }:
            raise RuntimeError(
                f"PaddleOCR-VL does not support {self.attn_backend} backend now."
            )
        self.layers = nn.ModuleList(
            [
                SiglipEncoderLayer(
                    config,
                    quant_config=quant_config,
                    prefix=f"{prefix}.layers.{layer_idx}",
                    attn_backend=self.attn_backend,
                    attn_backend_override=attn_backend_override,
                    use_upstream_fa=self.use_upstream_fa,
                )
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self.rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2)

    @staticmethod
    def flatten_list(image_grid_thw):
        tmp_image_grid_thw = list()
        for image_grid in image_grid_thw:
            if isinstance(image_grid, list):
                tmp_image_grid_thw.extend(image_grid)
            else:
                tmp_image_grid_thw.append(image_grid)
        return tmp_image_grid_thw

    def forward(
        self,
        inputs_embeds,
        cu_seqlens: torch.Tensor | None = None,
        image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
        | None = None,
        height_position_ids: torch.Tensor | None = None,
        width_position_ids: torch.Tensor | None = None,
    ) -> torch.Tensor:
        device = inputs_embeds.device
        hidden_states = inputs_embeds

        flatten_image_grid_thw = self.flatten_list(image_grid_thw)

        if width_position_ids is None or height_position_ids is None:
            split_hids = list()
            split_wids = list()
            for t, h, w in flatten_image_grid_thw:
                image_pids = torch.arange(t * h * w, device=device) % (h * w)
                sample_hids = image_pids // w
                sample_wids = image_pids % w
                split_hids.append(sample_hids)
                split_wids.append(sample_wids)
            width_position_ids = torch.concat(split_wids, dim=0)
            height_position_ids = torch.concat(split_hids, dim=0)

        pids = torch.stack(
            [height_position_ids, width_position_ids],
            dim=-1,
        )
        max_grid_size = pids.max() + 1
        rope_emb_max_grid = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rope_emb_max_grid[pids].flatten(1)

        if cu_seqlens is None:
            raise ValueError("cu_seqlens cannot be None for SiglipEncoder.")
        if not isinstance(cu_seqlens, torch.Tensor):
            cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
        else:
            cu_seqlens = cu_seqlens.to(device=device)

        max_seqlen = None
        seqlens = None
        if self.attn_backend in {_Backend.FLASH_ATTN, _Backend.ROCM_AITER_FA}:
            max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
        elif self.attn_backend == _Backend.XFORMERS:
            seqlens = cu_seqlens[1:] - cu_seqlens[:-1]

        hidden_states = inputs_embeds
        for encoder_layer in self.layers:
            hidden_states = encoder_layer(
                hidden_states,
                cu_seqlens=cu_seqlens,
                rotary_pos_emb=rotary_pos_emb,
                max_seqlen=max_seqlen,
                seqlens=seqlens,
            )
        return hidden_states

attn_backend instance-attribute

attn_backend = get_vit_attn_backend(
    head_size=head_dim,
    dtype=get_default_dtype(),
    attn_backend_override=attn_backend_override,
)

config instance-attribute

config = config

layers instance-attribute

layers = ModuleList(
    [
        (
            SiglipEncoderLayer(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.layers.{layer_idx}",
                attn_backend=attn_backend,
                attn_backend_override=attn_backend_override,
                use_upstream_fa=use_upstream_fa,
            )
        )
        for layer_idx in (range(num_hidden_layers))
    ]
)

rotary_pos_emb instance-attribute

rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2)

use_upstream_fa instance-attribute

use_upstream_fa = False

__init__

__init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
):
    super().__init__()
    self.config = config
    embed_dim = config.hidden_size
    num_heads = config.num_attention_heads
    head_dim = embed_dim // num_heads
    self.attn_backend = get_vit_attn_backend(
        head_size=head_dim,
        dtype=torch.get_default_dtype(),
        attn_backend_override=attn_backend_override,
    )
    self.use_upstream_fa = False
    if self.attn_backend not in {
        _Backend.FLASH_ATTN,
        _Backend.ROCM_AITER_FA,
    } and check_upstream_fa_availability(torch.get_default_dtype()):
        self.attn_backend = _Backend.FLASH_ATTN
        self.use_upstream_fa = True
    if self.attn_backend not in {
        _Backend.FLASH_ATTN,
        _Backend.TORCH_SDPA,
        _Backend.XFORMERS,
        _Backend.ROCM_AITER_FA,
    }:
        raise RuntimeError(
            f"PaddleOCR-VL does not support {self.attn_backend} backend now."
        )
    self.layers = nn.ModuleList(
        [
            SiglipEncoderLayer(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.layers.{layer_idx}",
                attn_backend=self.attn_backend,
                attn_backend_override=attn_backend_override,
                use_upstream_fa=self.use_upstream_fa,
            )
            for layer_idx in range(config.num_hidden_layers)
        ]
    )
    self.rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2)

flatten_list staticmethod

flatten_list(image_grid_thw)
Source code in vllm/model_executor/models/paddleocr_vl.py
@staticmethod
def flatten_list(image_grid_thw):
    tmp_image_grid_thw = list()
    for image_grid in image_grid_thw:
        if isinstance(image_grid, list):
            tmp_image_grid_thw.extend(image_grid)
        else:
            tmp_image_grid_thw.append(image_grid)
    return tmp_image_grid_thw

forward

forward(
    inputs_embeds,
    cu_seqlens: Tensor | None = None,
    image_grid_thw: list[
        tuple[int, int, int] | list[tuple[int, int, int]]
    ]
    | None = None,
    height_position_ids: Tensor | None = None,
    width_position_ids: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    inputs_embeds,
    cu_seqlens: torch.Tensor | None = None,
    image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
    | None = None,
    height_position_ids: torch.Tensor | None = None,
    width_position_ids: torch.Tensor | None = None,
) -> torch.Tensor:
    device = inputs_embeds.device
    hidden_states = inputs_embeds

    flatten_image_grid_thw = self.flatten_list(image_grid_thw)

    if width_position_ids is None or height_position_ids is None:
        split_hids = list()
        split_wids = list()
        for t, h, w in flatten_image_grid_thw:
            image_pids = torch.arange(t * h * w, device=device) % (h * w)
            sample_hids = image_pids // w
            sample_wids = image_pids % w
            split_hids.append(sample_hids)
            split_wids.append(sample_wids)
        width_position_ids = torch.concat(split_wids, dim=0)
        height_position_ids = torch.concat(split_hids, dim=0)

    pids = torch.stack(
        [height_position_ids, width_position_ids],
        dim=-1,
    )
    max_grid_size = pids.max() + 1
    rope_emb_max_grid = self.rotary_pos_emb(max_grid_size)
    rotary_pos_emb = rope_emb_max_grid[pids].flatten(1)

    if cu_seqlens is None:
        raise ValueError("cu_seqlens cannot be None for SiglipEncoder.")
    if not isinstance(cu_seqlens, torch.Tensor):
        cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
    else:
        cu_seqlens = cu_seqlens.to(device=device)

    max_seqlen = None
    seqlens = None
    if self.attn_backend in {_Backend.FLASH_ATTN, _Backend.ROCM_AITER_FA}:
        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
    elif self.attn_backend == _Backend.XFORMERS:
        seqlens = cu_seqlens[1:] - cu_seqlens[:-1]

    hidden_states = inputs_embeds
    for encoder_layer in self.layers:
        hidden_states = encoder_layer(
            hidden_states,
            cu_seqlens=cu_seqlens,
            rotary_pos_emb=rotary_pos_emb,
            max_seqlen=max_seqlen,
            seqlens=seqlens,
        )
    return hidden_states

SiglipEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipEncoderLayer(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        *,
        attn_backend: _Backend = _Backend.TORCH_SDPA,
        attn_backend_override: _Backend | None = None,
        use_upstream_fa: bool = False,
    ):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.self_attn = SiglipAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            projection_size=config.hidden_size,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
            attn_backend=attn_backend,
            attn_backend_override=attn_backend_override,
            use_upstream_fa=use_upstream_fa,
        )
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        *,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor | None,
        max_seqlen: torch.Tensor | None,
        seqlens: torch.Tensor | None,
    ) -> torch.Tensor:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            cu_seqlens=cu_seqlens,
            rotary_pos_emb=rotary_pos_emb,
            max_seqlen=max_seqlen,
            seqlens=seqlens,
        )

        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        return hidden_states

embed_dim instance-attribute

embed_dim = hidden_size

layer_norm1 instance-attribute

layer_norm1 = LayerNorm(embed_dim, eps=layer_norm_eps)

layer_norm2 instance-attribute

layer_norm2 = LayerNorm(embed_dim, eps=layer_norm_eps)

mlp instance-attribute

mlp = SiglipMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

self_attn instance-attribute

self_attn = SiglipAttention(
    embed_dim=hidden_size,
    num_heads=num_attention_heads,
    projection_size=hidden_size,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
    attn_backend=attn_backend,
    attn_backend_override=attn_backend_override,
    use_upstream_fa=use_upstream_fa,
)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    *,
    attn_backend: _Backend = TORCH_SDPA,
    attn_backend_override: _Backend | None = None,
    use_upstream_fa: bool = False,
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    *,
    attn_backend: _Backend = _Backend.TORCH_SDPA,
    attn_backend_override: _Backend | None = None,
    use_upstream_fa: bool = False,
):
    super().__init__()
    self.embed_dim = config.hidden_size
    self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
    self.self_attn = SiglipAttention(
        embed_dim=config.hidden_size,
        num_heads=config.num_attention_heads,
        projection_size=config.hidden_size,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
        attn_backend=attn_backend,
        attn_backend_override=attn_backend_override,
        use_upstream_fa=use_upstream_fa,
    )
    self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
    self.mlp = SiglipMLP(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )

forward

forward(
    hidden_states: Tensor,
    *,
    cu_seqlens: Tensor,
    rotary_pos_emb: Tensor | None,
    max_seqlen: Tensor | None,
    seqlens: Tensor | None,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    hidden_states: torch.Tensor,
    *,
    cu_seqlens: torch.Tensor,
    rotary_pos_emb: torch.Tensor | None,
    max_seqlen: torch.Tensor | None,
    seqlens: torch.Tensor | None,
) -> torch.Tensor:
    residual = hidden_states

    hidden_states = self.layer_norm1(hidden_states)
    hidden_states = self.self_attn(
        hidden_states=hidden_states,
        cu_seqlens=cu_seqlens,
        rotary_pos_emb=rotary_pos_emb,
        max_seqlen=max_seqlen,
        seqlens=seqlens,
    )

    hidden_states = residual + hidden_states

    residual = hidden_states
    hidden_states = self.layer_norm2(hidden_states)
    hidden_states = self.mlp(hidden_states)

    hidden_states = residual + hidden_states

    return hidden_states

SiglipMLP

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipMLP(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        # Special handling for BNB and torchao quantization
        if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
            quantizable = True
        else:
            # For other quantization, we require the hidden size to be a
            # multiple of 64
            quantizable = (
                config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
            )
        self.fc1 = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc1",
        )
        self.fc2 = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc2",
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)
        return hidden_states

activation_fn instance-attribute

activation_fn = get_act_fn(hidden_act)

config instance-attribute

config = config

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.activation_fn = get_act_fn(config.hidden_act)
    # Special handling for BNB and torchao quantization
    if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
        quantizable = True
    else:
        # For other quantization, we require the hidden size to be a
        # multiple of 64
        quantizable = (
            config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
        )
    self.fc1 = ColumnParallelLinear(
        config.hidden_size,
        config.intermediate_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc1",
    )
    self.fc2 = RowParallelLinear(
        config.intermediate_size,
        config.hidden_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc2",
    )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.fc1(hidden_states)
    hidden_states = self.activation_fn(hidden_states)
    hidden_states, _ = self.fc2(hidden_states)
    return hidden_states

SiglipVisionEmbeddings

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipVisionEmbeddings(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches
        self.cache_position_embedding = dict()
        self.cache_position_count = dict()
        self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
        self.packing_position_embedding = nn.Embedding(32768, self.embed_dim)

        self.register_buffer(
            "position_ids",
            torch.arange(self.num_positions).expand((1, -1)),
            persistent=False,
        )

    def interpolate_pos_encoding(
        self,
        embeddings: torch.Tensor,
        height: int,
        width: int,
        is_after_patchify: bool = False,
    ) -> torch.Tensor:
        num_positions = self.position_embedding.weight.shape[0]

        patch_pos_embed = self.position_embedding.weight.unsqueeze(0)

        dim = embeddings.shape[-1]

        if is_after_patchify:
            new_height = height
            new_width = width
        else:
            new_height = height // self.patch_size
            new_width = width // self.patch_size

        sqrt_num_positions = torch_int(num_positions**0.5)
        patch_pos_embed = patch_pos_embed.reshape(
            1, sqrt_num_positions, sqrt_num_positions, dim
        )
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)

        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            size=(new_height, new_width),
            mode="bilinear",
            align_corners=False,
        )

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return patch_pos_embed

    def fetch_position_embedding_lfu_cache(
        self, embeddings: torch.Tensor, h: int, w: int, max_cache: int = 20
    ):
        grid = (h, w)
        if grid in self.cache_position_embedding:
            self.cache_position_count[grid] += 1
            return self.cache_position_embedding[grid]

        if len(self.cache_position_embedding) >= max_cache:
            min_hit_grid = min(
                self.cache_position_count,
                key=self.cache_position_count.get,
            )
            self.cache_position_count.pop(min_hit_grid)
            self.cache_position_embedding.pop(min_hit_grid)

        position_embedding = self.interpolate_pos_encoding(embeddings, h, w, True)
        self.cache_position_count[grid] = 1
        self.cache_position_embedding[grid] = position_embedding
        return position_embedding

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        position_ids: torch.Tensor | None = None,
        image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
        | None = None,
        interpolate_pos_encoding=False,
    ) -> torch.Tensor:
        if pixel_values.dim() == 4:
            pixel_values = pixel_values.unsqueeze(0)
        if pixel_values.dim() == 5:
            if position_ids is None:
                raise ValueError(
                    "position_ids cannot be None when pixel_values.dim() is 5."
                )
            (
                batch_size,
                squence_len,
                channel,
                height,
                width,
            ) = pixel_values.shape
            target_dtype = self.patch_embedding.weight.dtype
            pixel_values = rearrange(pixel_values, "b l c h w -> (b l) c h w")
            patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
            embeddings = patch_embeds.flatten(-2).squeeze(-1)

            if interpolate_pos_encoding and image_grid_thw is not None:
                start = 0
                tmp_embeddings = list()
                for image_grid in image_grid_thw:
                    t, h, w = image_grid
                    end = start + t * h * w
                    image_embeddings = embeddings[start:end, :]
                    position_embedding = (
                        self.interpolate_pos_encoding(image_embeddings, h, w, True)
                        .squeeze(0)
                        .repeat(t, 1)
                    )
                    image_embeddings = image_embeddings + position_embedding
                    tmp_embeddings.append(image_embeddings)
                    start = end
                embeddings = torch.concat(tmp_embeddings, dim=0).unsqueeze(0)
            else:
                embeddings = embeddings + self.packing_position_embedding(position_ids)
            return embeddings
        else:
            raise ValueError(
                "Unsupported pixel_values dimension:"
                f" {pixel_values.dim()}. Expected 4 or 5."
            )

cache_position_count instance-attribute

cache_position_count = dict()

cache_position_embedding instance-attribute

cache_position_embedding = dict()

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

image_size instance-attribute

image_size = image_size

num_patches instance-attribute

num_patches = (image_size // patch_size) ** 2

num_positions instance-attribute

num_positions = num_patches

packing_position_embedding instance-attribute

packing_position_embedding = Embedding(32768, embed_dim)

patch_embedding instance-attribute

patch_embedding = Conv2d(
    in_channels=num_channels,
    out_channels=embed_dim,
    kernel_size=patch_size,
    stride=patch_size,
    padding="valid",
)

patch_size instance-attribute

patch_size = patch_size

position_embedding instance-attribute

position_embedding = Embedding(num_positions, embed_dim)

__init__

__init__(config: PretrainedConfig)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(self, config: PretrainedConfig):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.image_size = config.image_size
    self.patch_size = config.patch_size

    self.patch_embedding = nn.Conv2d(
        in_channels=config.num_channels,
        out_channels=self.embed_dim,
        kernel_size=self.patch_size,
        stride=self.patch_size,
        padding="valid",
    )

    self.num_patches = (self.image_size // self.patch_size) ** 2
    self.num_positions = self.num_patches
    self.cache_position_embedding = dict()
    self.cache_position_count = dict()
    self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
    self.packing_position_embedding = nn.Embedding(32768, self.embed_dim)

    self.register_buffer(
        "position_ids",
        torch.arange(self.num_positions).expand((1, -1)),
        persistent=False,
    )

fetch_position_embedding_lfu_cache

fetch_position_embedding_lfu_cache(
    embeddings: Tensor, h: int, w: int, max_cache: int = 20
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def fetch_position_embedding_lfu_cache(
    self, embeddings: torch.Tensor, h: int, w: int, max_cache: int = 20
):
    grid = (h, w)
    if grid in self.cache_position_embedding:
        self.cache_position_count[grid] += 1
        return self.cache_position_embedding[grid]

    if len(self.cache_position_embedding) >= max_cache:
        min_hit_grid = min(
            self.cache_position_count,
            key=self.cache_position_count.get,
        )
        self.cache_position_count.pop(min_hit_grid)
        self.cache_position_embedding.pop(min_hit_grid)

    position_embedding = self.interpolate_pos_encoding(embeddings, h, w, True)
    self.cache_position_count[grid] = 1
    self.cache_position_embedding[grid] = position_embedding
    return position_embedding

forward

forward(
    pixel_values: FloatTensor,
    position_ids: Tensor | None = None,
    image_grid_thw: list[
        tuple[int, int, int] | list[tuple[int, int, int]]
    ]
    | None = None,
    interpolate_pos_encoding=False,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    pixel_values: torch.FloatTensor,
    position_ids: torch.Tensor | None = None,
    image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
    | None = None,
    interpolate_pos_encoding=False,
) -> torch.Tensor:
    if pixel_values.dim() == 4:
        pixel_values = pixel_values.unsqueeze(0)
    if pixel_values.dim() == 5:
        if position_ids is None:
            raise ValueError(
                "position_ids cannot be None when pixel_values.dim() is 5."
            )
        (
            batch_size,
            squence_len,
            channel,
            height,
            width,
        ) = pixel_values.shape
        target_dtype = self.patch_embedding.weight.dtype
        pixel_values = rearrange(pixel_values, "b l c h w -> (b l) c h w")
        patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
        embeddings = patch_embeds.flatten(-2).squeeze(-1)

        if interpolate_pos_encoding and image_grid_thw is not None:
            start = 0
            tmp_embeddings = list()
            for image_grid in image_grid_thw:
                t, h, w = image_grid
                end = start + t * h * w
                image_embeddings = embeddings[start:end, :]
                position_embedding = (
                    self.interpolate_pos_encoding(image_embeddings, h, w, True)
                    .squeeze(0)
                    .repeat(t, 1)
                )
                image_embeddings = image_embeddings + position_embedding
                tmp_embeddings.append(image_embeddings)
                start = end
            embeddings = torch.concat(tmp_embeddings, dim=0).unsqueeze(0)
        else:
            embeddings = embeddings + self.packing_position_embedding(position_ids)
        return embeddings
    else:
        raise ValueError(
            "Unsupported pixel_values dimension:"
            f" {pixel_values.dim()}. Expected 4 or 5."
        )

interpolate_pos_encoding

interpolate_pos_encoding(
    embeddings: Tensor,
    height: int,
    width: int,
    is_after_patchify: bool = False,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def interpolate_pos_encoding(
    self,
    embeddings: torch.Tensor,
    height: int,
    width: int,
    is_after_patchify: bool = False,
) -> torch.Tensor:
    num_positions = self.position_embedding.weight.shape[0]

    patch_pos_embed = self.position_embedding.weight.unsqueeze(0)

    dim = embeddings.shape[-1]

    if is_after_patchify:
        new_height = height
        new_width = width
    else:
        new_height = height // self.patch_size
        new_width = width // self.patch_size

    sqrt_num_positions = torch_int(num_positions**0.5)
    patch_pos_embed = patch_pos_embed.reshape(
        1, sqrt_num_positions, sqrt_num_positions, dim
    )
    patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)

    patch_pos_embed = nn.functional.interpolate(
        patch_pos_embed,
        size=(new_height, new_width),
        mode="bilinear",
        align_corners=False,
    )

    patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
    return patch_pos_embed

SiglipVisionModel

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipVisionModel(nn.Module):
    def __init__(
        self,
        config,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        attn_backend_override: _Backend | None = None,
    ):
        super().__init__()

        self.vision_model = SiglipVisionTransformer(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.vision_model",
            attn_backend_override=attn_backend_override,
        )
        self.quant_config = quant_config

    @property
    def dtype(self) -> torch.dtype:
        return self.vision_model.embeddings.patch_embedding.weight.dtype

    @property
    def device(self) -> torch.device:
        return self.vision_model.embeddings.patch_embedding.weight.device

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    def forward(
        self,
        pixel_values,
        interpolate_pos_encoding: bool = False,
        position_ids: torch.Tensor | None = None,
        image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
        | None = None,
        cu_seqlens: torch.Tensor | None = None,
    ) -> BaseModelOutputWithPooling:
        return self.vision_model(
            pixel_values=pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
            position_ids=position_ids,
            image_grid_thw=image_grid_thw,
            cu_seqlens=cu_seqlens,
        )

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            if "head.attention" in name or "head.layernorm" in name:
                continue
            if "head.mlp" in name or "head.probe" in name:
                continue
            if self.quant_config is not None and (
                scale_name := self.quant_config.get_cache_scale(name)
            ):
                param = params_dict[scale_name]
                weight_loader = getattr(
                    param,
                    "weight_loader",
                    default_weight_loader,
                )
                loaded_weight = (
                    loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
                )
                weight_loader(param, loaded_weight)
                loaded_params.add(scale_name)
                continue
            for (
                param_name,
                weight_name,
                shard_id,
            ) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                if name.endswith(".bias") and name not in params_dict:
                    continue
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = getattr(
                    param,
                    "weight_loader",
                    default_weight_loader,
                )
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

device property

device: device

dtype property

dtype: dtype

quant_config instance-attribute

quant_config = quant_config

vision_model instance-attribute

vision_model = SiglipVisionTransformer(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.vision_model",
    attn_backend_override=attn_backend_override,
)

__init__

__init__(
    config,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    config,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
):
    super().__init__()

    self.vision_model = SiglipVisionTransformer(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.vision_model",
        attn_backend_override=attn_backend_override,
    )
    self.quant_config = quant_config

forward

forward(
    pixel_values,
    interpolate_pos_encoding: bool = False,
    position_ids: Tensor | None = None,
    image_grid_thw: list[
        tuple[int, int, int] | list[tuple[int, int, int]]
    ]
    | None = None,
    cu_seqlens: Tensor | None = None,
) -> BaseModelOutputWithPooling
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    pixel_values,
    interpolate_pos_encoding: bool = False,
    position_ids: torch.Tensor | None = None,
    image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]]
    | None = None,
    cu_seqlens: torch.Tensor | None = None,
) -> BaseModelOutputWithPooling:
    return self.vision_model(
        pixel_values=pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
        position_ids=position_ids,
        image_grid_thw=image_grid_thw,
        cu_seqlens=cu_seqlens,
    )

get_input_embeddings

get_input_embeddings() -> Module
Source code in vllm/model_executor/models/paddleocr_vl.py
def get_input_embeddings(self) -> nn.Module:
    return self.vision_model.embeddings.patch_embedding

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/paddleocr_vl.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue
        if "head.attention" in name or "head.layernorm" in name:
            continue
        if "head.mlp" in name or "head.probe" in name:
            continue
        if self.quant_config is not None and (
            scale_name := self.quant_config.get_cache_scale(name)
        ):
            param = params_dict[scale_name]
            weight_loader = getattr(
                param,
                "weight_loader",
                default_weight_loader,
            )
            loaded_weight = (
                loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
            )
            weight_loader(param, loaded_weight)
            loaded_params.add(scale_name)
            continue
        for (
            param_name,
            weight_name,
            shard_id,
        ) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            if name.endswith(".bias") and name not in params_dict:
                continue
            name = maybe_remap_kv_scale_name(name, params_dict)
            if name is None:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = getattr(
                param,
                "weight_loader",
                default_weight_loader,
            )
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

SiglipVisionTransformer

Bases: Module

Source code in vllm/model_executor/models/paddleocr_vl.py
class SiglipVisionTransformer(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        attn_backend_override: _Backend | None = None,
    ):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)
        self.encoder = SiglipEncoder(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.encoder",
            attn_backend_override=attn_backend_override,
        )
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        pixel_values: torch.Tensor,
        interpolate_pos_encoding: bool | None = False,
        position_ids: torch.Tensor | None = None,
        height_position_ids: torch.Tensor | None = None,
        width_position_ids: torch.Tensor | None = None,
        cu_seqlens: torch.Tensor | None = None,
        image_grid_thw: torch.Tensor | None = None,
    ) -> torch.Tensor:
        hidden_states = self.embeddings(
            pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
            position_ids=position_ids,
            image_grid_thw=image_grid_thw,
        )

        last_hidden_state = self.encoder(
            inputs_embeds=hidden_states,
            cu_seqlens=cu_seqlens,
            image_grid_thw=image_grid_thw,
            height_position_ids=height_position_ids,
            width_position_ids=width_position_ids,
        )

        last_hidden_state = self.post_layernorm(last_hidden_state)
        return last_hidden_state

config instance-attribute

config = config

embeddings instance-attribute

embeddings = SiglipVisionEmbeddings(config)

encoder instance-attribute

encoder = SiglipEncoder(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.encoder",
    attn_backend_override=attn_backend_override,
)

post_layernorm instance-attribute

post_layernorm = LayerNorm(embed_dim, eps=layer_norm_eps)

__init__

__init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
)
Source code in vllm/model_executor/models/paddleocr_vl.py
def __init__(
    self,
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_backend_override: _Backend | None = None,
):
    super().__init__()
    self.config = config
    embed_dim = config.hidden_size

    self.embeddings = SiglipVisionEmbeddings(config)
    self.encoder = SiglipEncoder(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.encoder",
        attn_backend_override=attn_backend_override,
    )
    self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool | None = False,
    position_ids: Tensor | None = None,
    height_position_ids: Tensor | None = None,
    width_position_ids: Tensor | None = None,
    cu_seqlens: Tensor | None = None,
    image_grid_thw: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def forward(
    self,
    pixel_values: torch.Tensor,
    interpolate_pos_encoding: bool | None = False,
    position_ids: torch.Tensor | None = None,
    height_position_ids: torch.Tensor | None = None,
    width_position_ids: torch.Tensor | None = None,
    cu_seqlens: torch.Tensor | None = None,
    image_grid_thw: torch.Tensor | None = None,
) -> torch.Tensor:
    hidden_states = self.embeddings(
        pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
        position_ids=position_ids,
        image_grid_thw=image_grid_thw,
    )

    last_hidden_state = self.encoder(
        inputs_embeds=hidden_states,
        cu_seqlens=cu_seqlens,
        image_grid_thw=image_grid_thw,
        height_position_ids=height_position_ids,
        width_position_ids=width_position_ids,
    )

    last_hidden_state = self.post_layernorm(last_hidden_state)
    return last_hidden_state

all_gather_interleave

all_gather_interleave(
    local_tensor: Tensor, hidden_size: int, tp_size: int
)

All-gather the input tensor interleavely across model parallel group.

Source code in vllm/model_executor/models/paddleocr_vl.py
def all_gather_interleave(local_tensor: torch.Tensor, hidden_size: int, tp_size: int):
    """All-gather the input tensor interleavely across model parallel group."""
    import torch.distributed as dist

    gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
    dist.all_gather(
        gathered_tensors, local_tensor, group=parallel_state.get_tp_group().device_group
    )

    gathered_tensors_split = [
        torch.split(tensor, hidden_size // tp_size, -1) for tensor in gathered_tensors
    ]
    ordered_tensors = [
        tensor for pair in zip(*gathered_tensors_split) for tensor in pair
    ]
    result_tensor = torch.cat(ordered_tensors, dim=-1)
    return result_tensor

apply_rotary_emb_torch

apply_rotary_emb_torch(
    x: Tensor,
    cos: Tensor,
    sin: Tensor,
    interleaved: bool = False,
) -> Tensor

x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)

Source code in vllm/model_executor/models/paddleocr_vl.py
def apply_rotary_emb_torch(
    x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, interleaved: bool = False
) -> torch.Tensor:
    """
    x: (batch_size, seqlen, nheads, headdim)
    cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
    """
    ro_dim = cos.shape[-1] * 2
    assert ro_dim <= x.shape[-1]
    cos = repeat(
        cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
    )
    sin = repeat(
        sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
    )
    return torch.cat(
        [
            x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
            x[..., ro_dim:],
        ],
        dim=-1,
    )

apply_rotary_pos_emb_vision

apply_rotary_pos_emb_vision(
    t: Tensor, freqs: Tensor
) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def apply_rotary_pos_emb_vision(t: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    rotary_emb_function = dispatch_rotary_emb_function(default=apply_rotary_emb_torch)
    t_ = t.float()
    cos = freqs.cos()
    sin = freqs.sin()
    output = rotary_emb_function(t_, cos, sin).type_as(t)
    return output

rotate_half

rotate_half(x: Tensor, interleaved: bool = False) -> Tensor
Source code in vllm/model_executor/models/paddleocr_vl.py
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
    if not interleaved:
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)
    x1, x2 = x[..., ::2], x[..., 1::2]
    return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)

smart_resize

smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 28 * 28 * 130,
    max_pixels: int = 28 * 28 * 1280,
)

Rescales the image so that the following conditions are met:

  1. Both dimensions (height and width) are divisible by 'factor'.

  2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

  3. The aspect ratio of the image is maintained as closely as possible.

Source code in vllm/model_executor/models/paddleocr_vl.py
def smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 28 * 28 * 130,
    max_pixels: int = 28 * 28 * 1280,
):
    """Rescales the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.

    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

    3. The aspect ratio of the image is maintained as closely as possible.

    """

    if height < factor:
        width = round((width * factor) / height)
        height = factor

    if width < factor:
        height = round((height * factor) / width)
        width = factor

    if max(height, width) / min(height, width) > 200:
        raise ValueError(
            f"absolute aspect ratio must be smaller than 200, "
            f"got {max(height, width) / min(height, width)}"
        )
    h_bar = round(height / factor) * factor
    w_bar = round(width / factor) * factor
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = math.floor(height / beta / factor) * factor
        w_bar = math.floor(width / beta / factor) * factor
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = math.ceil(height * beta / factor) * factor
        w_bar = math.ceil(width * beta / factor) * factor
    return h_bar, w_bar